

Increased Generator Flexibility through Distributed Software and Storage Assets

FERC Software Technical Conference
June 30, 2011

A123 SYSTEMS

A123 Systems Global Locations

- + 2,000+ employees in locations worldwide
- + >1,000,000 square feet of manufacturing facilities in United States, China and Korea

Corporate Headquarters, Research and Development

• Waltham, Massachusetts

Systems Design and Manufacturing

- Boston Area (Grid Hardware Systems)
- Livonia & Ann Arbor, Michigan (Automotive Systems and Cells)
- St. Louis, Missouri (Grid Software Systems)

European Sales and Engineering

Stuttgart, Germany

Battery Components and Cells

- Michigan, USA
- Korea
- China

Core Markets

Enabling New Products through Advanced Energy Storage

Transportation Commercial Passenger Hybrids, Hybrids, PHEVs and **PHEVs and EVs EVs**

- Fuel economy
- Reduced emissions
- Energy independence
- Lighter-weight components

Electric Grid

Regulation, **Grid Reliability**

- + Increase grid reliability
- **Enable Wind and Solar**
- Increase plant efficiency/utilization

Commercial

IT & Telecomm

- Improve performance
- Lighter weight
- Lower total cost of ownership over lead acid

Drivers

Building Block

System Overview

System consists of 4 major subsystems

Scalable Architecture from 100kW to 100's of MW SYSTEMS

Building-Based Wind Integration

Smart Grid Domain Controller Dashboard

Application Review Spinning Reserve: Chile

The Problem:

 Fragile power system increases risk of loss of production for area mines, driving high generation reserve requirement

The Solution:

- 12 MW storage in eight packaged systems replaced unpaid generating reserve, freeing up this generating capacity for paid energy service.
- In commercial service with < 3 year payback

Autonomous Response to Loss of Generation

CDEC-SING Fault Report No. 2777, June 3, 2011

Response to Loss of Transmission (Load)

CDEC-SING Fault Report No. 2580, October 22, 2010

A123 SYSTEMS

Operational Results

Faster, more consistent fault response through software

- High Reliability and Performance
 - + Responded to all generator assisted fault recoveries since Jan. 2010
 - + 209 reported faults in 2010
 - + Only unit to respond this consistently
 - + Response speed consistently higher than other units
- Improved thermal generator efficiency
 - + Power previously required to be held in reserve can now be sold
 - + Increase power generation by 4 percent
- Highly Configurable
 - + Speed and shape of response are programmable via SGDC

Application Review Wind Ramp Management: Denmark

The Problem: Renewable Output is Highly Volatile

1 Minute Output from typical wind farm

Definition of Ramp Rate: The speed at which the output of a resource changes

Magnitude of the Ramp Rate Problem

Ramp Rate Distribution for Each Minute

Distribution of Ramps for typical wind farm

Battery System Performance

Battery Power Volatility

Application Review Wind Ramp Management

The Problem: the Intermittent output from Wind and PV plants challenges the utility's ability to balance supply and demand. Interconnect approval requires ramp management.

The Problem Renewable Output is Unpredictable

Using Storage to "Firm" the Wind Farm Output

Using Storage to "Firm" the Wind Farm Output

Resulting Grid Output is Firm

Conclusion

A123 SYSTEMS

Conclusion

- A123's SGDC has proven the value of end point software through 18 months of ultra-fast spinning reserve calls
- End point control systems and software optimize storage asset and generation utilization based on local measurements
- Efficiency gains can be realized from software at grid end points in conjunction with central dispatch

Summary of Efficiency Gains

Examples of gains that can be achieved by Grid Storage:

- Make renewable resources more predictable to improve their value on the grid
- Reduce the ramp rate of renewable resources to limit negative impact on the grid
- Increase output of traditional generators by freeing up reserve capacity
- Improve efficiency of traditional generators by offloading variability of demand to a fast response storage resource

Why autonomous distributed resources

- Dramatically improve response time by placing storage resource at the point of potential grid disturbance to permit sub second response
 - + Proximity reduces the lag time of response and results in more accurate compensation for grid events. As a result, one can achieve more compensation with fewer resources.
- Reduce overall system complexity by distributing the problem into discrete components/chunks
- Distributing fast response resources results in more predictable grid participants at points where resources are placed, making central dispatch for macro grid events less complicated.

Thank You! Questions?

For more information, please contact:

John M. McNally

Director of Systems and Software Energy Solutions Group A123Systems, Inc.

jmcnally@a123systems.com

